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Received 30 December 1990 

Abstract. We present calculations leading to the phonon density of states in a Fibonacci 
quasicrystal with fixed end-points. The method is based on a selective elimination process 
and the results show that the system at low frequencies has the behaviour of a periodic 
lattice. The high-frequency end of the spectrum is found to have large forbidden bands 
and in the limit of longer chains the higher-frequency modes are seen to be suppressed. 
The density of state function has further been used to calculate the heat capacity which is 
found to be lower than its periodic counterpart. The electronic energy has been calculated 
from the associated transmission coefficient and the results show that the spectrum is largely 
band-like, in contrast to the uniform scaling structure which has been reponed. It is also 
shown that in the limit the quasicrystal reduces to P periodic structure; the calculations 
reproduce the usual results. 

1. Introduction 

The discovery [ I ,  21 of a phase of AlMn exhibiting icosahedral symmetry (termed 
'quasicrystal') in its diffraction pattern has drawn considerable attention from both 
experimental and theoretical sectors. Substantial progress has been made in understand- 
ing this material in terms of a quasiperiodic lattice. In an attempt to explain its 
diffraction pattern two major approaches for geometrical construction of a quasilattice 
have emerged. One method, due to Levine and coworkers [ 3 ] ,  follows the idea of 
generating the quasilattice from a Penrose tiling which consists of two unit cells 
(rhombuses in ZD and rhombohedra in 3 ~ ) .  The two unit cells are repetitively used 
following certain matching rules to form the quasilattice. The other approach developed 
by Zia and others [4] is based on the idea that a quasilattice can be seen as a hypersurface 
in a higher-dimensional periodic lattice. Apart from these two approaches other models 
are also available in the literature [ 5 ] .  

In addition to its geometric structure, attention has also been focused on understand. 
ing the physical properties of the quasicrystal. Because of mathematical complexities 
most of the work has been restricted to one-dimensional quasicrystals. The standard 
one-dimensional system that has been the subject of extensive study is the Fibonacci 
lattice, This lattice can be generated from two basis vectors of length a and b by 
successive application of the rule 

where So= a and S ,  = b and a is equal to rb, 7 being the golden mean (fi+ 1) /2  The 
study of electronic energy spectra was initiated by Khomoto and Banavar [6] (based 
on a previous work [ 7 ] )  and pursued by several other groups [8,91. In their work, 
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which uses the renormalization approach, a Schrodinger equation is written in terms 
of dynamic transfer matrices. It was then shown that the trace of these matrices can 
define a simple dynamic mapping. Allowed and forbidden energy eigenvalues were 
found from a fixed-point analysis of the mapping. Numerical results presented show 
that the energy spectrum is self-similar and the eigenstates can have critical structure. 

The phonon problem has also been addressed on the lines of the renormalization 
group method [6 ] ,  leading to the conclusion that the phonon spectra is self-similar. A 
more direct and transparent approach, not following the renormalization group 
approach, was taken by Lu and coworkers [lo] to study the vibration spectrum of a 
Fibonacci quasicrystal with fixed end-points. More recently, Ashroff and Stoinchcombe 
[ I l l  have used the Green function approach to investigate the density of states and 
eigenvalues for both electron and phonon spectra of a Fibonacci quasicrystal. In an 
excellent work Chakrabarti et a /  [121 have followed the same formalism to study the 
local density of states of an infinitely long Fibonacci chain. 

The Fibonacci quasicrystal has been grown in the laboratory. Merlin and coworkers 
[13] have been able to grow layers of GaAs-AIAs in a Fibonacci sequence and have 
made x-ray and Raman scattering measurements. 

In the present work we address the phonon, thermodynamic and electronic proper- 
ties of a finite Fibonacci quasicrystal. The major difference between our work and 
most others published is that we do  not use a dynamic mapping to study the system. 
In section 2 we discuss the vibration problem of a Fibonacci quasicrystal with fixed 
end-points on the basis of selective elimination. This method is based on the work of 
Goncalves de Silva and Koiller [ 141 for the study of local density of states of disordered 
chains and studied in more detail by Southern and others [IS]. In order to understand 
the selective elimination we note that a Fibonacci sequence at any generation can 
reduce to its preceding sequence with different bonds by introducing a scale transforma- 
tion. This transformation amounts to eliminating the displacement of those lattice sites 
that are connected to the left by an a bond and to the right by a b bond and thereby 
reducing the number of equations. In the process of this elimination we will show that 
the coefficients of the equations take on a very simple recursive form and also the 
structure of the equations stays unchanged. Hence, it is possible to calculate the 
coefficients after any number of selective eliminations. This enables us to reduce F(n) 
bonds and hence F ( n )  equations to one equation by a finite number of iterations. 
Here the Fibonacci number F ( n )  is defined through the relation F ( n + l ) =  
F ( n ) +  F ( n  - 1 )  where F ( 0 )  = 1 and F ( 1 )  = 1. The resulting equation can be solved 
numerically. We use this technique to study the vibration problem in the next section. 

In section 3 we study the electron band structure. We note that in a solid an electron 
in an allowed band has an extended state function in contrast to the localized core 
states. If the solid is modelled following Kronig-Penney as an array of potential 
barriers, then an electron in an extended energy state can tunnel across all the barriers. 
In other words it will have a large coefficient of transmission for barrier penetration. 
On the other hand, if it falls in a forbidden band it cannot tunnel and its transmission 
coefficient will fall to zero after a few barriers. Using the above arguments we first 
calculate the electron energy spectra of a periodic system exactly reproducing the 
results of Kronig-Penney and then we apply the same technique to a chain of potential 
harriers whose separations follow a Fibonacci sequence. The results will be shown to 
be in good agreement with the dynamical mapping approach. 

It may be noted that in all our calculations when the length of both the basis vectors 
a and b in the quasicrystal are made equal we recover the usual periodic lattice results. 

R K Pattnaik and E A Whittaker 
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2. Phonon spectrum 

Let us consider a one-dimensional chain of atoms separated from each other by lattice 
constants a or b with the associated spring constants being k, and kb. As pointed out 
in the introduction, the lattice constants a and b define a Fibonacci sequence through 
relation (1). 

The equation of motion of the nth atom of the chain is given by 

where m is the mass of the atom, u,(x, I )  is the displacement of the nth atom from 
equilibrium and k., is the spring constant between the nth and (n+j)th atoms. Here 
we consider only nearest-neighbour interactions, i.e. j = +l. Assuming harmonic time 
dependence we obtain 

(kn.n+l+k.- l , . -  m o 2 ) u .  = kn.n+lun+l+ ka-l .nun-l .  (3) 
If a = b, then k. = kb and u.(x) are just the Bloch functions for phonons. However, 
for the present case the Bloch theorem is not applicable and, therefore, we cannot 
assume wave-like displacements. 

In order to solve equation (3) we impose the boundary condition that the end-points 
of the chain are fixed (i.e. uo= 0 = U,,,). A similar system has been studied by Lu el al 
[ 101 using the transfer matrix method. Here, we follow the decimation approach of 
Goncalves da Silva and Koiller [14]. Consider a chain of nine atoms having eight 
bonds in a Fibonacci sequence. We note that each atom is connected to the left and 
right by a pair of spring constants that are either k. and kb, kb and k., or k, and k.. 
These three possibilities are invariant under the elimination process and in order to 
exploit this fact we introduce the following constants: 

k.(O) = k. 

k , (O)=k, (O)+ko(O)  (4) 

k2(0) = k ( 0 )  + kb(0)  

k , (O)=ka(O)+ ko(O). 

kb(O) = kb 

In terms of the above constants the equation of motion (equation (3)) for each atom 
of the chain may be written 

n = l  (k , (O) -  mWz)u, = kb(0)uz+ k.(O)u, (5 )  

and likewise for the other eight sites. 
Now let us introduce the transformation 

a(O)+ b(0) = a ( 1 )  a(0) = b ( 1 )  ( 6 )  
where a(0) = a and b(0 )  = b. Under the above transformation the chain which had 
eight bonds originally reduces to five bonds, which amounts to eliminating the displace- 
ment of those atoms that are connected to the left by an a bond and to the right by 
a b bond. In other words we need to eliminate ul , u4 and u6 from equations ( S ) ,  obtaining 
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and similar equations for U,, u5 and U,. In the decimated chain each atom is connected 
by a pair of spring constants, although of different strength, that again falls into one 
of the three possibilities. This invariance enables one to renormalize the constants 
defined in equation (7) and by inspection they can immediately be identified as 

R K Pattnaik and E A Whittaker 

k.(n - I ) k b ( n  - 1 )  
k , ( n  - 1 )  - mu2 k . ( n ) =  

k , ( n ) = k . ( n - l )  

k i ( n  - 1 )  
k , (n  - 1 ) -  m o 2  

k , ( n )  = k,(n - 1 ) -  

k ? , ( n - 1 )  
k2 (n)=  k,(n - 1 ) -  k; ( n  - !) - mw2 

k?,(n - l ) +  k i ( n  - 1) 
k , ( n  - 1) - m o 2  

k , ( n ) = k , ( n - 1 ) -  

where n is the number of decimation transformations made on the chain. 
The above form shows recursive structure of the constants at each stage of decima- 

tion. Further elimination of u2 and U, from equations (7) reduces the number of 
equations to two with the ks defined through equations (8) with n = 2 as expected. 
This recursive structure is a consequence of the invariance of the three possible spring 
constant pairs an atom can have at any stage of decimation. Furthermore, this invariance 
is expected because the Fibonacci sequence reduces to its preceding one (except for 
a scalar factor) under each decimation. 

With the boundary conditions, i.e. uQ = 0 = u.~. the last two equations can easily be 
solved for the eigenfrequencies. The elegance of the method lies in this ability to reduce 
the original 7 x 7 matrix of equation (5) into a 2 x 2 matrix by two stages of selective 
elimination. In this manner the equation of motion for a chain of atoms with fixed 
end-points, at any generation of the Fibonacci sequence, can be reduced to solving 
the determinant 

k , ( n ) -  mu2 I - k b ( n )  k , ( n ) - m w 2  

for the squared eigenfrequencies of the system where n is the number of decimations 
and k , ( n ) ,  etc, are related to the preceding stage through equations (8). Once the roots 
of the determinant in equation (9) are known, the density of states for the squared 
eigenfrequencies can he found using the relation [ 16, p 401 

where w j  are the roots of equation (9) and the role of the small imaginary part ia is 
to ensure convergence. However, since the roots of the determinant in equation (9) 
are quasi-continuously distributed, we can break the frequency space into arbitrarily 
narrow strips and in each strip the roots, of. will differ from each other infinitesimally. 
As a result we can approximate the summation over the roots in the last equation by 
a summation over the number of roots in each strip. Quantitatively, if uf is the centre 
frequency of the j th  strip of width d o 2  and n ( o j )  is the number of roots of the 
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determinant in equation (9) between oi and (wjtdw2)/2,  then the last equation takes 
the form 

We have used this expression to calculate the D ( w 2 )  which can be related to the density 
of states g ( w )  through the relation [17] 

g ( o )  = 2 w D ( 0 2 ) .  (12) 
In the following two cases we discuss the results of our calculations first applied to a 
periodic case and then to a Fibonacci chain. Finally, we also discuss heat capacities 
of both the systems. 

2.1. Periodic chain 

In order to test our formalism we first set the spring constants equal, i.e. k. = kb = k, 
thereby having a chain of atoms periodically spaced. In this limit the squared frequency 
density of states, as given by Hori [16, p31] is 

2 
D ( w 2 ) =  

r r w J z 7  

where w', = 4 k / m ,  showing singularities at o = 0 and at o =U,. The same quantity 
calculated with our formalism is shown in figure l (a) ,  confirming the analytical result, 

VI i (  
L ?  
o n  

3 I1 

0.0 2.5 
Squorsd Frequency 

Figure 1. Plot of phonon density of states for a ( a )  periodic and a ( b )  Fibonacci lattice. 
Thereare4182siteswith k U = 1 . 2 N m - ' a n d  k,=7k. ,where?=(Jj+1)/2andthedensity 
of states is in henz-'. In pan ( a )  kb = k, = 1.2 N m-'. 
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equation (17).  In our case we have taken k = 1.2 (with E = 0.005 and N = 4181) and 
we have observed from our calculation that when mu2> 4.8, the determinant (13) does 
not have any roots, which is indeed expected. 

R K Pattnaik and E A Whitfaker 

2.2. Fibonacci chain 

When k. # ks we have a Fibonacci quasicrystal and the spectrum as shown in figure 
l(b),  for the same N; and E is quite different from that of the periodic case except in 
the low-frequency range. The spectrum has forbidden bands of frequencies of various 
widths, with a wide gap at high frequency. The allowed frequency structure, particularly 
in the high-frequency zone, approaches a set of isolated delta function singularities, 
which are broadened due to our numerical method. If the narrow gaps are ignored, 
the spectrum is band-like and is seen to have Van Hove-type singularities at the band 
edges. 

The spectrum is self-similar in structure. When the central part of figure l ( b )  is 
expanded as shown in figure 2(a)  it has the same structure as the original one. The 
allowed zones are thus seen to occupy a fairly small portion of the total band. 

As the number of atoms in the chain are increased there is a decrease in the phonon 
density of states and the high-frequency modes are further suppressed. The results are 
shown in figure 2(b) for N = 46 368 bonds. This would indicate that, in the limit of 
an infinitely long chain, only low-frequency modes would propagate and high-frequency 

Figure 2. ( a )  Enlarged view of the middle band of figure I (b )  showing self-similarity in 
its structure. ( h )  Same as the plol  of figure l ( b )  except that the lalfice has 46 368 sites; a 
decrease in the phonon density of states and wider band gap in the higher-frequency end 
i s  shown. 
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modes would be heavily damped. We interpret this damping as follows. In a periodic 
system undergoing vibration the phase difference between any two consecutive lattice 
sites is a constant (which follows from the Bloch theorem). This constancy enables 
the system to sustain a normal mode and hence a well-defined dispersion relation. But 
for a Fibonacci lattice such a relation does not exist. In other words the phase difference 
between any two consecutive lattice sites is uncorrelated. At low frequencies, however, 
this lack of correlation is very weak and the system responds in a similar way to the 
periodic lattice. This can be seen at the lower-frequency end in figure l (b) .  But as the 
frequency is increased the lack of correlation becomes large enough to suppress the 
high-frequency modes in a very short time. This suppression becomes more pronounced 
as the chain length increases. 

3. Thermodynamic properties 

We now calculate the Debye model heat capacity of the Fibonacci quasicrystal using 
[181 

all c -- " - a T  

where 

U =  1 d o g ( o ) n ( o ,  T)hw 
J 

wl!h U Ind E(%, T !  being, respeective!y, the total thermal enerey and the Planck 
distribution function, and T the temperature. For compatibility with our numerical 
data, we replace the integration for the thermal energy by the summation 

where p = l/k,T, k ,  being the Boltzmann constant. In figure 3 we have plotted the 
heat capacities for both the periodic and Fibonacci chains. The latter has a smaller 

Figure 3. Plot of the heat capacity for a periodic and Fibonacci lattice. T h e  periodic system 
(the upper plot) rhows a higher heat capacity than the Fibonacci lattice. The temperature 
i s  in kelvins and the heat capacity is in electron volts per kelvin. 
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heat capacity compared with the periodic one. At low temperatures they both have 
almost the same heat capacity but, as the temperature increases, they split, the crystal 
showing larger capacity. Figures l ( a )  and l(b) show that within a given range of 
frequencies the Fibonacci lattice has a smaller total number of phonon states than the 
regular crystal, accounting for the smaller heat capacity. 

R K Pattnaik and E A Whittaker 

4. The electronic energy spectrum 

In this section we consider the electronic energy spectrum of a Fibonacci lattice. Our 
crystal is derived from the Kronig-Penney model but with two lattice constants a and 
b arranged according to the Fibonacci sequence. 

If the system is periodic, one can solve the Schrodinger equation in conjunction 
with the Bloch theorem, which leads to Bloch-type wavefunctions with energy bands. 
Since the Fibonacci lattice does not satisfy the Bloch theorem, we follow a different 
approach. The method is based on computing the transmission coefficient for an 
electron to penetrate through all barriers of the system. The transmissibility is then 
used to determine the allowed and forbidden energy bands. It can further be shown 
that this formalism-without use of the Bloch theorem-leads exactly to the results 
of the Kronig-Penney model for the periodic case when the transmission coefficient 
is made unity. 

Let us consider potential barriers of height V and width d forming a Kronig-Penny 
model Fibonacci crystal with lattice parameters a and b. 

Assuming the potential to be zero in the j th region, the solution to the Schrodinger 
equation is 

(15) Y,(x)=(A, e-'%) e ih+(Bj  ei%) e-", 

and, in the ( j + l ) t h  region, the potential being V, yields the solution 

Yj+l(x) = (A,,, eCKX,*l) eK'+(B,+, eKx,+I) eCK*. (16) 

where k2=2mE/h2and  KZ=2mlE-Vl /h2 .  
~ x - . - % . : - -  &La 1. -..-A "-.. -..-A:.:--- - I  v - "  :t -I- he ehns . , . .  +hot 
,"'dLb,,,,,g LLLC uY""""y CYl lUlLlYl lJ  L1L * - * j  1% " C  D L L Y W l l  L l l Y L  

where a = i k / K  and Ax, is the width of the region between the j th  and ( j+ l ) th  
potential barrier, which can be a or b. 

Similarly, by considering the ( j +  1)th and (j+2)th regions an identical relation 
can be established where ikAx and a would be replaced by Kd and a-'. 

Eliminating A,,, , we get an equation involving all the parameters of the system, 
which establishes a relation between the jth and (j+2)th valleys having the ( j+ l ) th  
barrier in between them. Iterative use of it enables us to connect the incident and 
transmitted wavefunctions through the equation 

where ti is the matrix obtained in eliminating A,,,, N is the number of barriers and 
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A N + l  is the amplitude of the wavefunction of the electron after it has tunnelled 
through all the N barriers. 

Using the Kronig-Penney limit 

lim lim Vd = constant (19) 

and the matrices of equation (17), the product in equation (18) may be evaluated and 
cast in the form 

v t m  d - 0  

(20) 1 (1 - P/ikb) e-'kAx, -P/ikb e-'kAx, [ (1 + Plikb) , = I  , = I  Plikbe""7 

N n ii=n 

where P=mVbd/h'. If the elements of the matrix after multiplying out all the N 
matrices on the right-hand side of the above equation are denoted by g,, then, from 
equation (18), the associated coefficient of transmission is given by 

Iy+I'= 1 l 2  T =  - 
&,(a,  b, P, N, ik) 

T is then computed as a function of the electron energy and an allowed band is 
identified as those energy values which make T>O. For T>O the electron has a 
continuous probability distribution function across the whole length of the crystal, 
reflecting the behaviour of an extended wavefunction associated with the electrons in 
the allowed bands of a solid. Since the above formalism is based on a numerical 
evaluation of T using equation (21), it fails to correctly predict the band edges. 
However, the calculations show that, as E approaches a forbidden band, T very sharply 
falls to as low as 0.001 and rises equally fast to as high as 0.99 on the other end of 
the forbidden band. Transmission coefficients computed for various periodic and 
Fibonacci systems show bands of transmission and non-transmission with well-defined 
edges. Further calculation shows that as the number of barriers are increased the band 
edges become sharper. 

In the following subsections we apply the above formalism to the periodic crystal 
and the Fibonacci quasicrystal. 

4. I. Periodic lattice 

If a = b the system reduces to a periodic crystal and, in that limit, we should reproduce 
the results of the Kronig-Penney model. In order to show that we first calculated g, 
as function of the incident wavenumber k, which in turn is used to calculate T as a 
function of k The allowed band structure is obtained from the equation E = h2k2/2m. 

Figure 4 ( a )  shows a plot of E versus k. We have taken N =4181 and P = 3 ~ / 2 .  
Although k is not a good quantum number associated with the crystal, it may be used 
to illustrate the qualitative structure of the bands. From the figure we observe that: 

(i) The energy spectrum is band-like with bandwidths increasing as the energy 
increases. 

(ii) Band gaps appear at ka = 11, 211, 311. 
(iii) The width of the forbidden bands narrows down with increasing energy, 

characteristic of the Kronig-Penney model. In the limit a = b the present formalism 
for T = 1 reduces to the exact analytical result of the Kronig-Penney model. 
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9 

0." 3.1416 s . m s  9.4240 12.- 
ko 

Figure 4. [ a )  Plot of the energy band structure for a periodic lattice having 4182 potential 
barriers. Band gaps with widths narrowing appear at a. 2a and 3n, and allowed bands 
widen as 'kn'increases. The energy is in units of hi/2ma' with a = 1.0nm and P = 3 a / 2 .  
( b )  Same plot as in [a) but for a Fibonacci lattice. It has a band structure but with numerow 
sub-bands. Here b =I.Onm and a = rb where ?= (&+1)/2. The states at the lower end 
of the spectrum indicate localization. 

4.2. Fibonacci lattice 

wnen a and b are noi equai we have a FibBonacci quasicrystai. The energy spectrum 
is shown in figure 4(b) for 4181 cells with P = 3 ~ / 2 .  We observe from the plots that: 

(i) Although the energy spectrum is. band-like in a broad sense, each band consists 
of sub-bands having narrow gaps. 

(ii) The energy band is self-similar. When any particular band is expanded it has 
a structure similar to the original one. In figure 5(a)  we have expanded a small section 
of figure 4(b), and figure 5(b) shows a further expansion of a small section of figure 
5 ( a ) .  The structure is seen to reproduce itself and, in view of that, we may say that in 
the limit of an infinitely long crystal the spectrum would be Cantor-like. This fact has 
also been reported by Khomoto and Banavar [6] using renormalization theory. 

(iii) Careful examination of figure 4(b) and a similar result for a chain of 89 
barriers shows that as the number of barriers are increased the lower energy band 
narrows down. We interpret this to mean that in the limit of longer chains the 
lower-energy states are localized t o  smaller regions of the crystal, unlike the higher- 
energy states which are extended throughout the crystal. 

According to the results of Khomoto and Banavar [6] the electronic energy spectrum 
has a uniform scaling. Our calculations, however, do  not show this behaviour. This, 

.. ,. 
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Figure 5. (a )  Enlarged view of one of the bands of figure 4(b) .  ( b )  Further enlargement 
of a section of part ( a ) .  Both plots reveal self-similar structure of the spectrum. 

we believe, is due to the tight binding model assumed in their discussion of the spectrum 
where the wavefunction is presumed to he atomic-like on the lattice site and negligibly 
small in the intersite space, which may not be a correct assumption. On the contrary, 
in our method we assume a continuous state function for the electrons across the whole 
length of the crystal in an allowed energy band. 

5. Conclusion 

We have addressed the phonon and electronic energy spectra of a one-dimensional 
Fibonacci lattice. We have used a selective elimination approach to find the density 
of states of the system without involving any approximations, in contrast to the local 
density of states as reported by Chakraharti et al [IZ]. In the low-frequency regime 
the superlattice behaves similarly to that of a periodic system. However, as the frequency 
is increased, forbidden hands appear and their width increases as the frequency is 
increased. The density of state function shows Van Hove-like singularities at the hand 
edges. The spectrum has a self-similar structure and the density of states has been 
found to decrease as the length of the chain is increased. This decrease is believed to 
be due to lack of correlation in the phase relationship between sites. This dependence 
of the density of states on the length of the chain has not been reported in the works 
of others [ l l ,  121, which are based on renormalization of an infinitely long Fibonacci 
chain. 
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The density of states as calculated in the present formalism has the advantage that 
it enables one to study the thermodynamic properties of the system. The heat capacity 
of the system has been calculated and it is found to be lower than its periodic 
counterpart. 

The electronic energy spectrum has been addressed by a novel method. We have 
calculated the electronic energy spectrum from the transmission coefficient without 
using any approximations other than that of Kronig-Penney. The results show that 
the energy spectrum is band-iiie with numerous gaps, and does not show the structure 
of uniform scaling as reported previously [6] .  This difference, as we have mentioned 
earlier, is believed to be due to the tight binding models considered in the dynamical 
mapping approach. It too has a self-similar structure and indications of localization. 
When the present manuscript was under consideration by the publishers a similar work 
on tunnelling through Fibonacci barriers was reported by Kiang er 01 [19]. 
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